Log Handling BMPs Guidebook

Appendix 4

Marine Foreshore Environmental Assessment Procedures

Guidebook Log Handling BMPs

APPENDIX 4: MARINE FORESHORE

ENVIRONMENTAL ASSESSMENT PROCEDURES

Source: Scott Northrup and Allan Cowan, Fisheries and Oceans Canada (Revised March 2002)

Marine development projects have the potential to affect fish¹ and fish habitat². Fisheries and Oceans Canada (DFO) is responsible for the protection and management of fish habitats under the authority of the *Fisheries Act* and may request plans, specifications and environmental assessments specific to marine projects where more detailed information is required. Assessments may be necessary for all types of projects, including, but not limited to aquaculture, log handling, industrial port development, marinas, private moorage facilities, marine repair facilities, pipeline or outfall installations, vessel launches or barge ramps, dredging projects and shoreline protection projects (breakwaters and seawalls). Presented below are standardized, transect-based assessment procedures intended to provide DFO with the basic information required to determine the potential effects of a development project on fish habitat.

Assessment Area

For comparative purposes, the assessment area should include both the foreshore site proposed for development as well as the adjacent foreshore. This will provide a context for the project and may provide data about cumulative effects if similar developments already occur on-site. A large scale site plan, preferably an enlargement of the hydrographic chart, with a small scale insert of the general geographic location will serve as a base map of the study area.

Tidal Height and Water Depth Measurements

The lowest normal tide (0.0 m), or chart datum, will be used as the reference point for the measurement of tidal height and water depth. Tidal height is recorded as positive relative to chart datum, while water depth below chart datum will be recorded as a negative value. For example, if the assessment is made when the tide is at 2 m, and observations are taken at a water depth of 6 m, then the depth will be recorded as -4 m. Tidal height will be corrected using the closest secondary port to the reference port found in the Canadian Tide and Current Tables, with further correction made for daylight savings time as required.

Transect Layout

Transects should be established perpendicular to the shoreline at regular intervals both within and adjacent to the proposed or active development area so as to sample representative fish habitat conditions. A preliminary low water reconnaissance or dive survey may be advisable to establish appropriate boundaries for the assessment. Transects should begin at the highest high water mark (HHWM: distance

^{1.} shellfish, crustaceans, marine animals and any parts of shellfish, crustaceans or marine animals, and the eggs, sperm, spawn, larvae, spat and juvenile stages of fish, shellfish, crustaceans and marine animals;

^{2.} spawning grounds and nursery, rearing, food supply and migration areas on which fish depend directly or indirectly in order to carry out their life processes.

Log Handling BMPs Guidebook

referenced as Station 0.0 m) and, at a minimum, extend to a depth of -20 m (-30 m if the development has the potential to effect deeper benthic habitats). Though small-scale intertidal projects may only require intertidal transects, care must be taken to ensure that a representative sample is collected across the proposed development area. Procedural manuals are available from DFO if sampling of intertidal clam or benthic invertebrates is required. To ensure complete assessment of marine plants and animals in the photic zone, deeper transects may be necessary, especially to determine the effects of sunken debris or woodwaste accumulations resulting from existing developments. Transects should be spaced approximately 25 m apart, although this interval may vary depending on the width of the site. The number of transects required will depend on the nature of the foreshore development proposed, anticipated effects of the development, and local site conditions (tides and currents, geography, fetch, geology, etc.). Transects should be individually numbered and indicated on the site plan, and their commencement point referenced to benchmarks, where possible.

Recording Observations

Habitat inventories should be conducted during the more productive spring and summer months. At that time, algae and saltmarsh species are more readily identifiable, enabling a better assessment of the productive capacity of the site.

Observations should be recorded every 5 m along the transect or at significant changes in habitat type. Observations should include substrate type and composition, presence and relative abundance of marine animals and plants, and any other notable features (e.g., debris accumulations) using the format described below for individual parameters.

Observations should be correlated to the transect distance from the HHWM and (corrected) tidal height or water depth (e.g., $Sta\ 0+80\ m\ /\ +4.5\ m$), with information compiled in tabular form, by transect. Common names of observed animals and plants are acceptable for the data table; a species list with scientific names should, however, be appended to the report.

General marine plant categories (e.g., rockweed, eelgrass, bull kelp, saltmarsh, etc.) and any other notable features should be sketched to scale directly on a copy of the site plan, drawings or photographs of the site. A site profile should be prepared for each transect showing the slope of the foreshore and the location of indicator marine plants or invertebrates. A sketch of the proposed marine development should be superimposed over the site plan so that any potential effect of the project on fish habitat is clear. Compensatory habitat proposed for offsetting altered habitat should also be sketched on site maps and profiles to enable review of the positioning of replacement habitat relative to the project.

Substrate

Substrate types are to be subdivided into the following size class categories and recorded cumulatively as percentage out of a total of 100% (e.g., Boulder 5%; Cobble 15%; Gravel 60%, Sand 20%):

Bedrock	Boulder	Cobble	Gravel	Sand.	Silt/mud/clay
		64-256 mm dia.	2-64 mm dia.	0.062-2 mm dia	<0.062 mm dia.

Guidebook Log Handling BMPs

Marine Plants

Marine plants include rooted vascular vegetation (e.g., eelgrass, saltmarsh vegetation, etc.) and marine algae (e.g., rockweed, kelp, etc.). Marine plant observations are recorded as percent areal coverage estimated per 5 m by 1 m transect segment. Observations can be recorded as percentages (5%, 10%, 15%, etc.) or by utilizing the following areal coverage classes:

+	1	2	3	4
<5%	5-25%	25-50%	50-75%	75-100%

Sessile Animals

Many marine animals permanently attached to substrates function as important fish habitat (e.g., barnacles, bay mussels, etc.). Sessile animals are recorded as percent areal coverage along the transect line using either estimated percentages or by areal coverage classes, as presented above.

Motile Animals

Motile animals include fish and marine invertebrates such as crabs and snails. These can be individually counted along the transect or, where too numerous, their estimated numbers can be recorded. Population estimates will most likely be applied to species such as herring or mysid shrimp that naturally occur in large numbers.

Other Features

Accumulations of wood bark and debris, sunken logs or other waste materials arising from on-site or nearby development activities should also be recorded. For wood bark and related small size debris, observations are recorded as percent areal coverage estimates per $5\,\mathrm{m}$ by $1\,\mathrm{m}$ transect segment and estimated deposition depth (e.g., 15% / $10\,\mathrm{cm}$). For larger materials (sunken logs, wood chunks, etc.), observations can be recorded by individual piece count or by estimate of percent areal coverage.

Photographic Documentation

It is essential to produce a photographic record along the intertidal and subtidal transects. A videographic record of subtidal transects is also recommended. Photos and videos provide a real-time record of characteristic fish habitat at the proposed site and can be invaluable to future post-development site monitoring. Photographic records also facilitate comparison of the productivity of natural habitats with any compensatory habitat constructed to offset habitat losses. As visibility may be a problem, careful attention should be given to appropriate tidal levels, and midday lighting conditions are recommended. Aerial photos, taken at low tide, are often useful to put the site into context with the surrounding area and to verify information provided from other sources.

Assessment reports should include photographs of representative fish habitat types. Depending upon the scope of the proposed foreshore development, an unedited, labeled copy of the assessment video may also be required for the report submission. The video footage should be referenced with pertinent information (e.g., time, date, depth, heading, etc.), and a written or recorded interpretation should accompany the video.

Log Handling BMPs Guidebook

Summary of information to be submitted

- 1. Base map showing tenure area boundaries, surrounding area, transect locations and sampling stations
- 2. Shoreline video/photographs of intertidal zone
- 3. Underwater video/photographs of transects
- 4. Tabular data for each transect describing substrate type and composition, marine plants, sessile and motile marine animals, and other notable features
- 5. Habitat map showing location of different substrate types, plants, animals and operational infrastructure
- 6. Profile diagrams of each transect showing slope, sediment types and the major marine plants or animals observed
- 7. Photographs of site and aerial photographs if available.